你真的了解数据仓库、数据湖、数据湖仓吗?五分钟带你了解数据湖仓的演变
本文涉及到大数据领域的通识知识,建议每一位对大数据感兴趣的同学认真阅读、认真阅读、认真阅读。
前言
数据分析是现代企业和组织决策过程中不可或缺的一部分,数据分析技术经过数十年的发展,需求场景从 BI 报表到数据探寻、实时预测、用户画像等不断丰富,技术架构经历从数据仓库、数据湖、到数据湖仓的演进,并走向数据湖仓一体架构,通过一套架构服务多样化的分析场景。
数据仓库
数据仓库的发展可以追溯到 1980 年,关系型数据库、日志文件等数据源的数据经过 ETL 处理,统一存储到数据仓库,用于服务 BI 报表、数据挖掘等分析场景。数据仓库在数据质量、事务处理、查询性能、数据治理等方面有明显的优势,但随着数据分析的需求越来越大,数据仓库的方案也面临一些挑战。
- 数据多样化
除了结构化的数据,半结构化、非结构化的数据越来越多。
- 数据孤岛问题
数据仓库面向主题管理,导致数据分散形成孤岛,难以形成全局统一的数据分析。
- 成本与扩展性
大数据量增长带来数据存储成本与横向扩展的问题。
- 高级数据分析支持
数据仓库能很好的支持 BI 相关应用,但随着 AI 的发展,AI 应用与数据仓库的数据交互效率不高,制约了 AI 应用的发展。
数据湖
数据湖的概念在 2010 年首次提出,如果把数据仓库/集市类比为瓶装水,数据湖则是以更加原生态方式存储数据的大池子。数据湖的核心优势是统一与开放,数据基于对象存储、HDFS 等系统实现低成本、可扩展的数据存储,并作为企业数据的 Single Source of Truth;同时数据的数据格式是开放的,便于不同的应用灵活访问。
数据湖解决了数据成本与扩展性、数据多样性、数据孤岛等问题,并同时满足 BI 与 AI 应用对数据分析的诉求;但数据湖在数据分析性能、数据管理与治理方面仍然存在较大的挑战。
湖仓分层架构
数据仓库与数据湖各有长处,业界持续在探索两者如何更好地融合,在过去几年湖仓分层的架构得到广泛的应用。企业数据统一写到数据湖,作为统一存储,湖上开放的数据可以服务 AI、ML 等应用场景;数据湖上部分数据经过 ETL 处理导入到数据仓库服务 BI 等 OLAP 分析场景。
湖仓分层架构融合了数据湖与数据仓库的优势,但面临一些问题与挑战。部分数据从数据湖导入到数据仓库,数据链路的增长影响数据分析的时效性,两份数据也会带来冗余存储、数据口径不一致的问题;另外,对于数据仓库里加工产生的数据,仍然很难高效的服务 AI 场景。
数据湖仓
湖仓分层架构在过去几年被广泛应用,并且不断地加深融合。新兴的数据仓库如 Snowflake、Redshift、BigQuery 均采用云原生存算分离架构演进,并且支持直接查询开放数据湖的能力。数据湖在事务支持、查询性能等方面的能力不如数据仓库,近年来随着新兴数据湖格式如 Iceberg、Hudi、Delta Lake 等的发展,事务支持能力得到提升;另外,在查询性能上,通过不断优化数据湖上的数据分布以及增加缓存机制等技术的演进,数据湖上的数据分析性能已经大幅提升,达到接近数据仓库的水平。
从数据湖和数据仓库的演进来看,两者在不断的融合,并逐步往数据湖仓的方向演进,兼具数据湖与数据仓库的优势。数据湖仓作为一种新的数据分析架构,用户采用湖仓就能方便将数据源和数据应用连接在一起。数据湖仓兼具数据仓库与数据湖的优势,湖仓具备开放统一的数据存储能力,并基于统一存储直接服务批处理、流处理、交互式分析等多种分析场景,实现湖仓 One data,all analytics 的业务价值。
如何快速构建Lakehouse
现如今,主流的数仓类产品都在向Lakehouse架构发展。本文将以StarRocks为例,介绍基于StarRocks构建Lakehouse架构。
基于 StarRocks,用户可以高效的构建 Lakehouse 数据分析架构,用户可以选择 StarRocks 内表或开放数据湖 Apache Iceberg、Apache Hudi、Apache Paimon 作为统一的数据存储,基于 StarRocks 服务 BI 报表、Ad-hoc 等多样化的分析场景,对于业务性能要求高的查询,通过物化视图技术实现按需透明加速。
湖仓实践案例
腾讯微信
数据写入到 Iceberg,基于 StarRocks 实现准实时分析,数据新鲜度从小时/天到分钟即,查询性能提升 3-6 倍。
携程旅行
数据统一存储在 Hive,通过 StarRocks 直接服务 BI 报表,交互式分析。重点业务场景按需创建物化视图查询加速,查询性能提升 10+ 倍
总结
Lakehouse 兼具数据仓库与数据湖的优势,是下一代数据分析架构的演进趋势;StarRocks 是构建 Lakehouse 的最佳选择,已在微信、小红书、携程、平安银行等数十个大型企业落地实践,帮助企业实现 One data、all analytics 的业务价值。
想要了解更多有关StarRocks的具体内容,你可以关注:遇码,回复starrocks,获取StarRocks官方文档。